
Informed search methods 

Tuomas Sandholm 
Computer Science Department 

Carnegie Mellon University 

Read Chapter 4 of Russell and Norvig 



Informed Search Methods 
Heuristic = “to find”, “to discover” 

•   “Heuristic” has many meanings in general 
•  How to come up with mathematical proofs 
•  Opposite of algorithmic 
•  Rules of thumb in expert systems 
•  Improve average case performance, e.g. in CSPs 
•  Algorithms that use low-order polynomial time (and come 
within a bound of the optimal solution) 

•  % from optimum 
•  % of cases 
•  % PAC 

•   h(n) that estimates the remaining cost from a state to a solution 



Best-First Search  
function BEST-FIRST-SEARCH (problem, EVAL-FN) returns a 
solution sequence 
   inputs: problem, a problem 

 Eval-Fn, an evaluation function 

   Queuing-Fn – a function that orders nodes by EVAL-FN 
   return GENERAL-SEARCH (problem, Queuing-Fn) 

An implementation of best-first search using the general search 
algorithm. 

Usually, knowledge of the problem is incorporated in an evaluation 
function that describes the desirability of expanding the particular 
node. 

If we really knew the desirability, it would not be a search at all.  
“Seemingly best-first search” 

f(n) 



Greedy Search 
function GREEDY-SEARCH (problem) returns a solution or failure 
   return BEST-FIRST-SEARCH (problem, h) 

h(n) = estimated cost of the cheapest path from the state at node n to a 
goal state 



Greedy Search… 

Stages in a greedy search for Bucharest, using the straight-line distance to 
Bucharest as the heuristic function hSLD.  Nodes are labeled with their h-values. 

Not Optimal 
Incomplete 
O(bm) time 
O(bm) space 



Beam Search 

Use f(n) = h(n)  but |nodes| ≤ K 

•  Not complete 
•  Not optimal 



A* Search 
function A*-SEARCH (problem) returns a solution or failure 
   return BEST-FIRST-SEARCH (problem, g+h) 

f(n) = estimated cost of the cheapest solution through n 
       = g(n) + h(n) 



A* Search… 

Stages in an A* search for Bucharest.  Nodes are labeled with f = g
+h.  The h values are the straight-line distances to Bucharest. 

f=291+380 
=671 

f=291+380 
=671 



A* Search… 

In a minimization problem, an admissible heuristic  h(n) 
never overestimates the real value 

 (In a maximization problem, h(n) is admissible if it 
 never underestimates) 

Best-first search using f(n) = g(n) + h(n) and an admissible 
h(n) is known as A* search 

A* tree search is complete & optimal 



Monotonicity of a heuristic 
h(n) is monotonic if, for every node n and every successor n’ of n generated by any action a, 
the estimated cost of reaching the goal from n is no greater than the step cost of getting to n’ 
plus the estimated cost of reaching the goal from n’: h(n) ≤ c(n,a,n’) +h(n’).  

This implies that f(n) (which equals g(n)+h(n)) never decreases along a path from the root.  
Monotonic heuristic => admissible heuristic. 

Map of Romania showing contours at f = 380, f = 400 and f = 420, with Arad as the start state.  
Nodes inside a given contour have f-costs lower than the contour value. 

With a monotonic heuristic, we can interpret A* as searching through contours: 



A* expands all nodes n with f(n) < f*, and may expand 
some nodes right on the “goal contour” (f(n) = f*), 
before selecting a goal node. 

With a monotonic heuristic, even A* graph search (i.e., 
search that deletes later-created duplicates) is optimal. 

Another option, which requires only admissibility – 
not monotonicity – is to have the duplicate detector 
always keep the best (rather than the first) of the 
duplicates. 

Monotonicity of a heuristic… 



Completeness of A* 
Because A* expands nodes in order of increasing f, it must 
eventually expand to reach a goal state.  This is true unless 
there are infinitely many nodes with f(n) ≤ f* 
How could this happen? 
•   There is a node with an infinity branching factor 
•   There is a path with finite path cost but an infinite number 
of nodes on it 

So, A* is complete on graphs with a finite branching factor 
provided there is some positive constant δ s.t. every operator 
costs at least δ 



Proof of optimality of A* tree search 
Let G be an optimal goal state, and f(G) = f* = g(G). 
Let G2 be a suboptimal goal state, i.e. f(G2) = g(G2) > f*. 
Suppose for contradiction that A* has selected G2 from the queue. (This 
would terminate A* with a suboptimal solution) 

Let n be a node that is currently a leaf node on an optimal path to G. 

Situation at the point where a sub-optimal goal state G2 is about to be picked from the queue 

Because h is admissible, f* ≥ f(n).   

If n is not chosen for expansion over G2, we must have f(n) ≥ f(G2) 
So, f* ≥ f(G2).  Because h(G2)=0, we have f* ≥ g(G2), contradiction. 

Assumes h is admissible, but does not assume h is monotonic 



Complexity of A* 

•  Generally O(bd) time and space. 

•  Sub-exponential growth when |h(n) - h*(n)| ≤ O(log h*(n)) 
•  Unfortunately, for most practical heuristics, the error is 
at least proportional to the path cost 



A* is optimally efficient for any given h-function among 
algorithms that extend search paths from the root. I.e. no 
other optimal algorithm is guaranteed to expand fewer 
nodes   (for a given search formulation) 

Intuition: any algorithm that does not expand all nodes in 
the contours between the root and the goal contour runs 
the risk of missing the optimal solution. 

A* is optimally efficient 



Generating heuristics  
(h-functions) 



Heuristics (h(n)) for A* 
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A typical instance of the 8-puzzle 

h1: #tiles in wrong position 

h2: sum of Manhattan distances of the tiles from their goal positions 

h2 dominates h1:   ∀n,  h2(n) ≥ h1(n) 

Heuristics? 



Heuristics (h(n)) for A* … 

It is always better to use a heuristic h(n) with higher values, 
as long as it does not overestimate. 
<= A* expands all nodes with f(n) < f* 

Comparison of the search costs and effective branching factors for the ITERATIVE-
DEPENING-SEARCH and A* algorithms with h1, h2.  Data are averaged over 100 
instances of the 8-puzzle, for various solution lengths. 



Inventing heuristic functions h(n) 
Cost of exact solution to a relaxed problem is often a good heuristic for original problem. 
Relaxed problem(s) can be generated automatically from the problem description by 
dropping or relaxing constraints. 
Most common example in operations research: relaxing all integrality constraints and using 
linear programming to get an optimistic h-value.   

What if no dominant heuristic is found? 
   h(n) = max [ h1(n), … hm(n) ] 
   h(n) is still admissible & dominates the component heuristics 

Use probabilistic info from statistical experiments: “If h(n)=14, h*(n)=18”. 
 Gives up optimality, but does less search 

Pick features & use machine learning to determine their contribution to h. 

Use full breath-first search as a heuristic? 

search 
time 

complexity of computing h(n) 



More efficient variants of A* 
search (and approximations) 



Approximate A* versions  
(less search effort, but only an approximately optimal solution) 

1.  Dynamic weighting: 
f(n) = g(n) + h(n) +a [1- (depth(n) / N)] h(n) 
where N is (an upper bound on) depth of desired goal. 
Idea: Early on in the search do more focused search. 
Thrm: Solution is within factor (1+ a) of optimal. 

2.  Aa*: 
From open list, choose among nodes with f-value within a 

factor (1+ a) of the most promising f-value. 
Thrm: Solution is within factor (1+ a) of optimal 
Make the choice based on which of those nodes leads to 

lowest search effort to goal (sometimes picking a node 
with best h-value accomplishes this) 



Best-bound search = A* search 
but uses tricks in practice 

•  A* search was invented in the AI research community 
•  Best-bound search is the same thing, and was independently 

invented in the operations research community 
–  With heavy-to-compute heuristics such as LP, in practice, the 

commercial mixed integer programming solvers: 
•  Use parent’s f value to queue nodes on the open list, and only evaluate 

nodes exactly when (if) they come off the open list  
–  => first solution may not be optimal  
–  => need to continue the search until all nodes on the open list look worse 

than the best solution found 
•  Do diving.   In practice there is usually not enough memory to store the 

LP data structures with every node.  Instead, only one LP table is kept.  
Moving to a child or parent in the search tree is cheap because the LP 
data structures can be incrementally updated.  Moving to another node in 
the tree can be more expensive.  Therefore, when a child node is almost 
as promising as the most-promising (according to A*) node, the search is 
made to proceed to the child instead. 

–  Again, need to continue the search until all nodes on the open list look worse 
than the best solution found 



Memory-bounded search 
algorithms 



Iterative Deepening A* (IDA*)  
function IDA*(problem) returns a solution sequence 
   inputs: problem, a problem 
   static: f-limit, the current f-COST limit 
              root, a node 

   root  MAKE-NODE(INITIAL-STATE[problem]) 
   f-limit  f-COST(root) 
   loop do 
          solution, f-limit  DFS-CONTOUR(root,f-limit) 
          if solution is non-null then return solution 
          if f-limit = ∞ then return failure; end 

function DFS-CONTOUR(node,f-limit) returns a solution sequence and a new f-COST limit 
   inputs: node, a node 
                f-limit, the current f-COST limit 
   static: next-f, the f-COST limit for the next contour, initially ∞ 

   if f-COST[node] > f-limit then return null, f-COST[node] 
   if GOAL-TEST[problem](STATE[node]) then return node, f-limit 
   for each node s in SUCCESSOR(node) do 
        solution, new-f  DFS-CONTOUR(s,f-limit) 
        if solution is non-null then return solution, f-limit 
        next-f  MIN(next-f, new-f); end 
   return null, next-f 

f-COST[node] = g[node] + h[node] 



IDA* … 

Complete & optimal under same conditions as A*. 
Linear space. Same O( ) time complexity as A*.  

If #nodes grows exponentially, then asymptotically 
optimal space. 



IDA* … 

Effective e.g. in 8-puzzle where f typically only increases 2-3 
times  2-3 iterations. 

Last iteration ~ A* 

Ineffective in e.g. TSP  where f increases continuously  
  each new iteration only includes one new node. 

-  If A* expands N nodes, IDA* expands O(N2) nodes 
-  Fixed increment ε  ~1/ε iterations 
-  Obtains ε-optimal solution if terminated once first solution 
is found 
-  Obtains an optimal solution if search of the current 
contour is completed 



A* vs. IDA* 

Map of Romania showing contours at f = 380, f = 400 and f = 420, with Arad as the start 
sate. Nodes inside a given contour have f-costs lower than the contour value. 



Memory-bounded search algorithms 

•  IDA* 1985 
•  Recursive best-first search 1991 
•  Memory-bounded A* (MA*) 1989 
•  Simple memory-bounded A* (SMA*) 1992 … 

}use too little memory 



Simple Memory-bounded A* (SMA*) 
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(Example with 3-node memory) 
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Progress of SMA*.  Each node is labeled with its current f-cost.  
Values in parentheses show the value of the best forgotten descendant. 

Optimal & complete if enough memory 
Can be made to signal when the best solution found might not be optimal  
- E.g. if J=19 

� = goal 

Search space 



SMA* pseudocode (not in 2nd edition 2 of book) 

function SMA*(problem) returns a solution sequence 
   inputs: problem, a problem 
   static: Queue, a queue of nodes ordered by f-cost 

   Queue  MAKE-QUEUE({MAKE-NODE(INITIAL-STATE[problem])}) 
   loop do 
          if Queue is empty then return failure 
          n  deepest least-f-cost node in Queue 
          if GOAL-TEST(n) then return success 
          s  NEXT-SUCCESSOR(n) 
          if s is not a goal and is at maximum depth then 
              f(s)  ∞ 
          else 
              f(s)  MAX(f(n),g(s)+h(s)) 
          if all of n’s successors have been generated then 
              update n’s f-cost and those of its ancestors if necessary 
          if SUCCESSORS(n) all in memory then remove n from Queue 
          if memory is full then 
              delete shallowest, highest-f-cost node in Queue 
              remove it from its parent’s successor list 
              insert its parent on Queue if necessary 
          insert s in Queue 
    end 

Numerous details have been omitted in the interests of clarity 


